The Electrochemical Transformation of aaa-Trifluoroacetophenone into Acetophenone; an Unusually Ready Hydrogenolysis of the C-F Bond

By JACK H. STOCKER* and ROY M. JENEVEIN

(Department of Chemistry, Louisiana State University in New Orleans, New Orleans, Louisiana 70122)

The electrolytic reduction of aca-trifluoroacetophenone does not proceed to the expected pinacol, but yields acetophenone and/or acetophenone pinacol depending on the potential employed and the reaction time permitted.

The experimental data and the cited literature, vide infra, permit the following conclusions:

(a) The reduction potential successfully employed for complete hydrogenolysis of all three C-F bonds is substantially below the lowest previously reported; (b) the complete hydrogenolysis is not a single step in protic solvents as has been previously proposed; (c) the potentials required for the three successive stages of hydrogenolysis must be very nearly the same; and (d) hydrogenolysis occurs prior rather than subsequent to pinacolization.

Pertinent polaragraphic data: An E, value of -0.89 v at pH 4.2 was determined for the start of C-F fission; a single wave was found. No evidence for any reducibility at less than the solvent decay limit of -1.3 v was found for either the hexafluoroacetophenone pinacols or the acetophenone pinacols. For comparison, benzyl fluoride and benzotrifluoride showed no reduction to -1.3 v and ptrifluoromethylacetophenone was reduced to the corresponding pinacol without C-F fission at -1.15 v (>90% yield in macro runs).

Lund³ has reported that few -CF₃ to -CH₃ transformations occur below -2.0 v but that a substituted benzotrifluoride was reducible at pH 6 to the analogous toluene at an E_{\bullet} of -1.67 v (vs. S.C.E.). Cohen et al.4 studied similar reductions polarographically; the lowest related E_{\downarrow} values

Electrolytic reduction of aaa-trifluoroacetophenone

Potential (v)	Current (ma)	Time (hr.)	Products ^a
-1.06	400	9	67% acetophenone pinacol
-1.06	460	1	14% acetophenone
			46% α -fluoroacetophenone
-1.10	200	28	68% acetophenone pinacolb
			<5% acetophenone
-1.04	710	9	20% acetophenone pinacol
-1.02	970	3.5	63% acetophenone pinacol
-0.90	300	30	9% acetophenone pinacol
			87% acetophenone
-0.95	450	0.5	3% acetophenone
			27% α-fluoroacetophenone
			> 50% starting material

^a Recovered starting material is given when present; yields are based on starting ketone. In addition to the products mentioned, an examination for $\alpha\alpha$ -diffuoroacetophenone, as well as all the possible carbinols and pinacols, was made on the basis of known or analogous n.m.r. spectra. Di- and tetra-fluoroacetophenone pinacols were eliminated because of absence of any signals (other than due to the monofluoro-ketone and D_2O -replaceable hydroxylic protons) in the $\tau 3.0$ —7·1 region. That some hexafluoroacetophenone pinacol was probably present in some cases was suggested by otherwise unexplained exchangeable hydroxylic protons; this could account for a maximum of about 10% of the missing material balance.

Description 20% Pure racemic acetophenone pinacol formally isolated.

The electrolytic reductions, all under conditions of controlled potential, are summarized in the Table. The general experimental technique has been described; n.m.r. analysis was utilized. All potentials are given relative to an Ag-AgCl reference electrode [saturated KCl, 0.04 v more negative than standard calomel electrode (S.C.E.)], and a pH of ca. 4.2 was used.

they offer for aqueous media are about -1.70 v(vs. a Hg pool anode) with a nonaqueous medium giving even higher values. All aqueous media reductions were reported as single step for complete reduction. Elving and Leone⁵ have studied the polarographic reduction of phenacyl fluoride in aqueous alcohol in detail and found the E_{i} associated with the C-F fission to be pH dependent

Reverse isotope dilution experiment, [14C]-labelled acetophenone pinacols used (cf. ref. 1). Only the acetophenone pinacols were investigated.

on the acid side, reporting values of -0.85—0.94 v (vs. S.C.E.) for the pH range of 4.0—4.5. These investigators stress the single step total C-F fission of the CF₃ group at any potential more negative than that required for the monofluorocompound.

Our data require the stepwise loss of fluorine; fission of the second C-F bond would appear to be

even more readily accomplished than that of the first, while the third C-F bond breaks somewhat less readily. The differences are clearly of the magnitude of hundredths of a volt (-0.89 vs.-0.85—0.94, vide supra). Involvement of a α keto-group in this ready hydrogenolysis seems to be indicated.

(Received, April 30th, 1968; Com. 527.)

- ¹ J. H. Stocker and R. M. Jenevein, J. Org. Chem., 1968, 33, 294.
- ² J. H. Stocker, D. H. Kern, and R. M. Jenevein, J. Org. Chem., 1968, 33, 412.

 ³ H. Lund, Acta Chem. Scand., 1959, 13, 192.

 ⁴ A. I. Cohen, B. T. Keeler, N. H. Coy, and H. L. Yale, Analyt. Chem., 1962, 34, 216.

- ⁵ P. J. Elving and J. T. Leone, J. Amer. Chem. Soc., 1957, 79, 1546.